De la estadística clásica al machine learning: revisión sistemática sobre el uso de modelos de IA para la gestión del riesgo crediticio
PDF

Palabras clave

Inteligencia artificial
Riesgo crediticio
Aprendizaje automático
Modelos predictivos
Regulación financiera

Cómo citar

Arevalo Vasquez , B. E. ., & Sánchez Mojica, K. Y. (2026). De la estadística clásica al machine learning: revisión sistemática sobre el uso de modelos de IA para la gestión del riesgo crediticio. Formación Estratégica, 13(1), 138–155. Recuperado a partir de https://formacionestrategica.com/index.php/foes/article/view/213

Resumen

Este artículo es una revisión sistemática de la literatura sobre la aplicación de la inteligencia artificial (IA) en
el sector financiero, con énfasis en la evaluación del riesgo crediticio. Para ello, se recopilan y analizan 51
trabajos de investigación publicados en bases de datos académicas internacionales, seleccionados según
criterios de relevancia, accesibilidad y calidad de citación. El estudio aborda tanto los métodos tradicionales
de análisis crediticio, basados en modelos estadísticos y reglas determinísticas, como los enfoques modernos
de aprendizaje automático (ML), que incorporan técnicas computacionales avanzadas para mejorar la
predicción y clasificación del riesgo. También se incluye investigación complementaria sobre marcos
regulatorios, implicaciones éticas, el impacto ambiental de la IA y su relación con la transformación digital del
sector financiero en el contexto de la Industria 4.0.
Los resultados muestran que los modelos de ML tienden a superar a los métodos tradicionales en términos de
precisión y capacidad predictiva, aunque la implementación de algunos de ellos enfrenta limitaciones asociadas
con la explicabilidad, la transparencia algorítmica y el cumplimiento normativo. La integración efectiva de la
IA en la evaluación del riesgo crediticio también requiere un equilibrio entre la innovación tecnológica y la
regulación responsable, lo que podría favorecer la adopción de modelos híbridos que combinen la solidez
analítica de los métodos tradicionales con la eficiencia predictiva de los modelos de ML.

PDF

Referencias

Ahmed, S., Alshater, M. M., Ammari, A. E., & Hammami, H. (2022). Artificial intelligence and

machine learning in finance: A bibliometric review. Research in International Business and

Finance, 61, 101646. https://doi.org/10.1016/j.ribaf.2022.101646

Alzoubi, Y. I., & Mishra, A. (2024). Green artificial intelligence initiatives: Potentials and challenges.

Journal of Cleaner Production, 468, 143090. https://doi.org/10.1016/j.jclepro.2024.143090

Amato, A., Osterrieder, J. R., & Machado, M. R. (2024). How can artificial intelligence help customer

intelligence for credit portfolio management? A systematic literature review. International Journal

of

Information

artificial

Management

Data

Insights,

(2),

https://doi.org/10.1016/j.jjimei.2024.100234

Armagan, I. U. (2023). Price prediction of the Borsa Istanbul banks index with traditional methods

and

neural

networks.

Borsa

Istanbul

Review,

,

S30-S39.

https://doi.org/10.1016/j.bir.2023.10.005

Bahoo, S., Cucculelli, M., Goga, X., & Mondolo, J. (2024). Artificial intelligence in Finance: A

comprehensive review through bibliometric and content analysis. SN Business & Economics, 4(2),

https://doi.org/10.1007/s43546-023-00618-x

Beckmann, L., & Hark, P. F. (2024). ChatGPT and the banking business: Insights from the US stock

market on potential implications for banks. Finance Research Letters, 63, 105237.

https://doi.org/10.1016/j.frl.2024.105237

Latin

America.

Belli, L., & Zingales, N. (2022). Data protection and artificial intelligence inequalities and regulations

in

Computer

Law & Security Review, 47, 105761.

https://doi.org/10.1016/j.clsr.2022.105761

Benfica, V., & Marques, A. C. (2024). Technological and financial development as drivers of Latin

America’s

energy

transition.

Renewable

Energy,

,

https://doi.org/10.1016/j.renene.2024.121664

Berrada, I. R., Barramou, F. Z., & Alami, O. B. (2022). A review of Artificial Intelligence approach

for credit risk assessment. 2022 2nd International Conference on Artificial Intelligence and Signal

Processing (AISP), 1-5. https://doi.org/10.1109/AISP53593.2022.9760655

Bhuiyan, M., & Sweet, M. M. R. (2025). Credit Risk Assessment Using Statistical and Machine

Learning: Basic Methodology and Risk Modeling Applications. SSRN Electronic Journal.

https://doi.org/10.2139/ssrn.5068722

risk

Bosker, J., Gürtler, M., & Zöllner, M. (2025). Machine learning-based variable selection for clustered

credit

modeling.

Journal

of

Business

Economics,

(4),

-652.

https://doi.org/10.1007/s11573-024-01213-8

Bouteraa, M., Chekima, B., Thurasamy, R., Bin-Nashwan, S. A., Al-Daihani, M., Baddou, A.,

Sadallah, M., & Ansar, R. (2024). Open Innovation in the Financial Sector: A Mixed-Methods

Approach to Assess Bankers’ Willingness to Embrace Open-AI ChatGPT. Journal of Open

Innovation:

Technology,

Market,

https://doi.org/10.1016/j.joitmc.2024.100216

and

Complexity,

(1),

Artículo de investigación

Risk

Bussmann, N., Giudici, P., Marinelli, D., & Papenbrock, J. (2021). Explainable Machine Learning in

Credit

Management.

Computational

Economics,

(1),

-216.

https://doi.org/10.1007/s10614-020-10042-0

Cruz Salazar, L. A., Gil, S., Rueda Carvajal, G. D., Sánchez-Zuluaga, G. J., & Zapata-Madrigal, G.

D. (2024). AI in assessing Industry 4.0 adoption in Colombia: A case study approach. IFAC

PapersOnLine, 58(8), 162-167. https://doi.org/10.1016/j.ifacol.2024.08.067

Cubric, M., & Li, F. (2024). Bridging the ‘Concept–Product’ gap in new product development:

Emerging insights from the application of artificial intelligence in FinTech SMEs. Technovation,

, 103017. https://doi.org/10.1016/j.technovation.2024.103017

Doumpos, M., Zopounidis, C., Gounopoulos, D., Platanakis, E., & Zhang, W. (2023). Operational

research and artificial intelligence methods in banking. European Journal of Operational

Research, 306(1), 1-16. https://doi.org/10.1016/j.ejor.2022.04.027

Faheem, M. A. (2021). AI-Driven Risk Assessment Models: Revolutionizing Credit Scoring and

Default Prediction. Unpublished. https://doi.org/10.13140/RG.2.2.21281.01128

Fathy, T. (2024). Artificial Intelligence and Predictive Data Analytics to Enhance Risk Assessment

and Credit Scoring Mechanisms in Retail Banking.

Fatima, S., & Chakraborty, M. (2024). Adoption of artificial intelligence in financial services: The

case of robo-advisors in India. IIMB Management Review, 36(2), 113-125.

https://doi.org/10.1016/j.iimb.2024.04.002

model.

Gasmi, I., Neji, S., Mansouri, N., & Soui, M. (2025). Bank credit risk prediction using machine

learning

Neural

Computing

and

Applications,

(16),

-10350.

https://doi.org/10.1007/s00521-025-11044-5

Hajipour, V., Hekmat, S., & Amini, M. (2023). A value-oriented Artificial Intelligence-as-a-Service

business plan using integrated tools and services. Decision Analytics Journal, 8, 100302.

https://doi.org/10.1016/j.dajour.2023.100302

Hussain, S., Bharathy, G., & Aziz, S. (2024). Explainable Artificial Intelligence in Financial

Services: A Case Study on Credit Card Delinquency. SSRN. https://doi.org/10.2139/ssrn.4930148

Kiran, A., Gongada, T. N., Arangi, V., Ahmad, A. Y. A. B., Dhabliya, D., & Gupta, A. (2023).

Assessing the Performance of Machine Learning Algorithms for Credit Risk Assessment. 2023

rd International Conference on Advancement in Electronics & Communication Engineering

(AECE), 881-886. https://doi.org/10.1109/AECE59614.2023.10428359

Kowsar, M. (2022). A SYSTEMATIC REVIEW OF CREDIT RISK ASSESSMENT MODELS IN

EMERGING ECONOMIES: A FOCUS ON BANGLADESH’S COMMERCIAL BANKING

SECTOR. American Journal of Advanced Technology and Engineering Solutions.

Lappas, P. Z., & Yannacopoulos, A. N. (2021). A machine learning approach combining expert

knowledge with genetic algorithms in feature selection for credit risk assessment. Applied Soft

Computing, 107, 107391. https://doi.org/10.1016/j.asoc.2021.107391

Liu, J., Zhang, S., & Fan, H. (2022). A two-stage hybrid credit risk prediction model based on

XGBoost and graph-based deep neural network. Expert Systems with Applications, 195, 116624.

https://doi.org/10.1016/j.eswa.2022.116624

Machado, M. R., & Karray, S. (2022). Assessing credit risk of commercial customers using hybrid

machine learning algorithms. Expert Systems with Applications, 200, 116889.

https://doi.org/10.1016/j.eswa.2022.116889

Artículo de investigación

Malik, S., Muhammad, K., & Waheed, Y. (2024). Artificial intelligence and industrial applications

A revolution in modern industries. Ain Shams Engineering Journal, 15(9), 102886.

https://doi.org/10.1016/j.asej.2024.102886

Mi Alnaser, F., Rahi, S., Alghizzawi, M., & Ngah, A. H. (2023). Does artificial intelligence (AI)

boost digital banking user satisfaction? Integration of expectation confirmation model and

antecedents of artificial intelligence enabled digital banking. Heliyon, 9(8), e18930.

https://doi.org/10.1016/j.heliyon.2023.e18930

Milojević, N., & Redzepagic, S. (2021). Prospects of Artificial Intelligence and Machine Learning

Application in Banking Risk Management. Journal of Central Banking Theory and Practice,

(3), 41-57. https://doi.org/10.2478/jcbtp-2021-0023

Noriega, J. P., Rivera, L. A., & Herrera, J. A. (2023). Machine Learning for Credit Risk Prediction:

A Systematic Literature Review. Data, 8(11), Article 11. https://doi.org/10.3390/data8110169

Navarro Pino, D., Badillo Rincón, J. S., Portillo Padilla, M. D., & Pineda Aguilera, S. E. (2024).

Tecnologías y herramientas del internet de las cosas (IoT) para el desarrollo de prototipos de

entornos cotidianos. Revista Colombiana de Tecnologías de Avanzada (RCTA), 2(44), 97–103.

https://doi.org/10.24054/rcta.v2i44.3020

Pattnaik, D., Ray, S., & Raman, R. (2024). Applications of artificial intelligence and machine learning

in

the financial services industry: A bibliometric review. Heliyon, 10(1), e23492.

https://doi.org/10.1016/j.heliyon.2023.e23492

Paz, Á., Crawford, B., Monfroy, E., Barrera-García, J., Peña Fritz, Á., Soto, R., Cisternas-Caneo, F.,

& Yáñez, A. (2025). Machine Learning and Metaheuristics Approach for Individual Credit Risk

Assessment:

A

Systematic

Literature

Review.

Biomimetics,

(5),

https://doi.org/10.3390/biomimetics10050326

Polireddi, N. S. A. (2024). An effective role of artificial intelligence and machine learning in banking

sector. Measurement: Sensors, 33, 101135. https://doi.org/10.1016/j.measen.2024.101135

Pozzo, D. N., Gonzalez Beleño, C. A., Correa, K. R., Donado, M. G., Gomez Pedroza, F. J., &

Moncada Diaz, J. E. (2024). Managers’ attitudes and behavioral intentions towards using artificial

intelligence for organizational decision-making: A study with Colombian SMEs. Procedia

Computer Science, 238, 956-961. https://doi.org/10.1016/j.procs.2024.06.119

Proyag Pal, Zhiyuan Wang, Xu Zhu, Jiajia Chew, Katarzyna Pruś, & Xiangang Wei. (2025). AI-Based

Credit Risk Assessment and Intelligent Matching Mechanism in Supply Chain Finance.

https://doi.org/10.5281/ZENODO.15368771

P.s., Dr. V. (2023). How can we manage biases in artificial intelligence systems – A systematic

literature review. International Journal of Information Management Data Insights, 3(1), 100165.

https://doi.org/10.1016/j.jjimei.2023.100165

Rizal, N. A. (2024). Artificial Intelligence in Finance. En Reference Module in Social Sciences.

Elsevier. https://doi.org/10.1016/B978-0-443-13701-3.00030-X

Rodrigues, A. R. D., Ferreira, F. A. F., Teixeira, F. J. C. S. N., & Zopounidis, C. (2022). Artificial

intelligence, digital transformation and cybersecurity in the banking sector: A multi-stakeholder

cognition-driven framework. Research in International Business and Finance, 60, 101616.

https://doi.org/10.1016/j.ribaf.2022.101616

review.

Sadok, H., Sakka, F., & El Maknouzi, M. E. H. (2022). Artificial intelligence and bank credit analysis:

A

Cogent

Economics

https://doi.org/10.1080/23322039.2021.2023262

&

Finance,

(1),

Artículo de investigación

review.

Shi, S., Tse, R., Luo, W., D’Addona, S., & Pau, G. (2022). Machine learning-driven credit risk: A

systemic

Neural

Computing

and

Applications,

(17),

-14339.

https://doi.org/10.1007/s00521-022-07472-2

Singh, J., Singh, G., Gahlawat, M., & Prabha, C. (2022). Big Data as a Service and Application for

Indian

Banking

Sector.

Procedia

Computer

Science,

,

-887.

https://doi.org/10.1016/j.procs.2022.12.090

Stanley Chidozie Umeorah, Adesola Oluwatosin Adelaja, Bibitayo Ebunlomo Abikoye, Oluwatoyin

Funmilayo Ayodele, & Yewande Mariam Ogunsuji. (2024). Data-driven credit risk monitoring:

Leveraging machine learning in risk management. Finance & Accounting Research Journal, 6(8),

-1435. https://doi.org/10.51594/farj.v6i8.1399

Tao, M. (2024). Digital brains, green gains: Artificial intelligence’s path to sustainable

transformation.

Journal

of

Environmental

Management,

,

https://doi.org/10.1016/j.jenvman.2024.122679

Tewari, I., Bisht, S., Tiwari, A., Joshi, B., Arora, S., & Tewari, G. (2023). The Revolutionary

Transformation of India’s Banking Industry through Artificial Intelligence. 2023 14th

International Conference on Computing Communication and Networking Technologies

(ICCCNT), 1-5. https://doi.org/10.1109/ICCCNT56998.2023.10307322

Tóth, Z., & Blut, M. (2024). Ethical compass: The need for Corporate Digital Responsibility in the

use of Artificial Intelligence in financial services. Organizational Dynamics, 53(2), 101041.

https://doi.org/10.1016/j.orgdyn.2024.101041

Trzaska, R., & Sus, A. (2023). Industry 4.0 business strategic risks based on the scalability 4.0

concept. Artificial Intelligence area. Procedia Computer Science, 225, 3255-3264.

https://doi.org/10.1016/j.procs.2023.10.319

Wei, Y. (2023). Application of Machine Learning and Artificial Intelligence in Credit Risk

Assessment. 2023 2nd International Conference on Artificial Intelligence and Autonomous Robot

Systems (AIARS), 150-156. https://doi.org/10.1109/AIARS59518.2023.00037

Wilhelmina Afua Addy, Chinonye Esther Ugochukwu, Adedoyin Tolulope Oyewole, Onyeka

Chrisanctus Ofodile, Omotayo Bukola Adeoye, & Chinwe Chinazo Okoye. (2024). Predictive

analytics in credit risk management for banks: A comprehensive review. GSC Advanced Research

and Reviews, 18(2), 434-449. https://doi.org/10.30574/gscarr.2024.18.2.0077

Zhang, X., Xu, L., Li, N., & Zou, J. (2024). Research on Credit Risk Assessment Optimization Based

on

Machine

Learning.

Computer

Science

and

Mathematics.

https://doi.org/10.20944/preprints202407.1349.v1

Zhu, H., Vigren, O., & Söderberg, I.-L. (2024). Implementing artificial intelligence empowered

financial advisory services: A literature review and critical research agenda. Journal of Business

Research, 174, 114494. https://doi.org/10.1016/j.jbusres.2023.114494

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Descargas

Los datos de descargas todavía no están disponibles.