Resumen
Este artículo es una revisión sistemática de la literatura sobre la aplicación de la inteligencia artificial (IA) en
el sector financiero, con énfasis en la evaluación del riesgo crediticio. Para ello, se recopilan y analizan 51
trabajos de investigación publicados en bases de datos académicas internacionales, seleccionados según
criterios de relevancia, accesibilidad y calidad de citación. El estudio aborda tanto los métodos tradicionales
de análisis crediticio, basados en modelos estadísticos y reglas determinísticas, como los enfoques modernos
de aprendizaje automático (ML), que incorporan técnicas computacionales avanzadas para mejorar la
predicción y clasificación del riesgo. También se incluye investigación complementaria sobre marcos
regulatorios, implicaciones éticas, el impacto ambiental de la IA y su relación con la transformación digital del
sector financiero en el contexto de la Industria 4.0.
Los resultados muestran que los modelos de ML tienden a superar a los métodos tradicionales en términos de
precisión y capacidad predictiva, aunque la implementación de algunos de ellos enfrenta limitaciones asociadas
con la explicabilidad, la transparencia algorítmica y el cumplimiento normativo. La integración efectiva de la
IA en la evaluación del riesgo crediticio también requiere un equilibrio entre la innovación tecnológica y la
regulación responsable, lo que podría favorecer la adopción de modelos híbridos que combinen la solidez
analítica de los métodos tradicionales con la eficiencia predictiva de los modelos de ML.
Referencias
Ahmed, S., Alshater, M. M., Ammari, A. E., & Hammami, H. (2022). Artificial intelligence and
machine learning in finance: A bibliometric review. Research in International Business and
Finance, 61, 101646. https://doi.org/10.1016/j.ribaf.2022.101646
Alzoubi, Y. I., & Mishra, A. (2024). Green artificial intelligence initiatives: Potentials and challenges.
Journal of Cleaner Production, 468, 143090. https://doi.org/10.1016/j.jclepro.2024.143090
Amato, A., Osterrieder, J. R., & Machado, M. R. (2024). How can artificial intelligence help customer
intelligence for credit portfolio management? A systematic literature review. International Journal
of
Information
artificial
Management
Data
Insights,
(2),
https://doi.org/10.1016/j.jjimei.2024.100234
Armagan, I. U. (2023). Price prediction of the Borsa Istanbul banks index with traditional methods
and
neural
networks.
Borsa
Istanbul
Review,
,
S30-S39.
https://doi.org/10.1016/j.bir.2023.10.005
Bahoo, S., Cucculelli, M., Goga, X., & Mondolo, J. (2024). Artificial intelligence in Finance: A
comprehensive review through bibliometric and content analysis. SN Business & Economics, 4(2),
https://doi.org/10.1007/s43546-023-00618-x
Beckmann, L., & Hark, P. F. (2024). ChatGPT and the banking business: Insights from the US stock
market on potential implications for banks. Finance Research Letters, 63, 105237.
https://doi.org/10.1016/j.frl.2024.105237
Latin
America.
Belli, L., & Zingales, N. (2022). Data protection and artificial intelligence inequalities and regulations
in
Computer
Law & Security Review, 47, 105761.
https://doi.org/10.1016/j.clsr.2022.105761
Benfica, V., & Marques, A. C. (2024). Technological and financial development as drivers of Latin
America’s
energy
transition.
Renewable
Energy,
,
https://doi.org/10.1016/j.renene.2024.121664
Berrada, I. R., Barramou, F. Z., & Alami, O. B. (2022). A review of Artificial Intelligence approach
for credit risk assessment. 2022 2nd International Conference on Artificial Intelligence and Signal
Processing (AISP), 1-5. https://doi.org/10.1109/AISP53593.2022.9760655
Bhuiyan, M., & Sweet, M. M. R. (2025). Credit Risk Assessment Using Statistical and Machine
Learning: Basic Methodology and Risk Modeling Applications. SSRN Electronic Journal.
https://doi.org/10.2139/ssrn.5068722
risk
Bosker, J., Gürtler, M., & Zöllner, M. (2025). Machine learning-based variable selection for clustered
credit
modeling.
Journal
of
Business
Economics,
(4),
-652.
https://doi.org/10.1007/s11573-024-01213-8
Bouteraa, M., Chekima, B., Thurasamy, R., Bin-Nashwan, S. A., Al-Daihani, M., Baddou, A.,
Sadallah, M., & Ansar, R. (2024). Open Innovation in the Financial Sector: A Mixed-Methods
Approach to Assess Bankers’ Willingness to Embrace Open-AI ChatGPT. Journal of Open
Innovation:
Technology,
Market,
https://doi.org/10.1016/j.joitmc.2024.100216
and
Complexity,
(1),
Artículo de investigación
Risk
Bussmann, N., Giudici, P., Marinelli, D., & Papenbrock, J. (2021). Explainable Machine Learning in
Credit
Management.
Computational
Economics,
(1),
-216.
https://doi.org/10.1007/s10614-020-10042-0
Cruz Salazar, L. A., Gil, S., Rueda Carvajal, G. D., Sánchez-Zuluaga, G. J., & Zapata-Madrigal, G.
D. (2024). AI in assessing Industry 4.0 adoption in Colombia: A case study approach. IFAC
PapersOnLine, 58(8), 162-167. https://doi.org/10.1016/j.ifacol.2024.08.067
Cubric, M., & Li, F. (2024). Bridging the ‘Concept–Product’ gap in new product development:
Emerging insights from the application of artificial intelligence in FinTech SMEs. Technovation,
, 103017. https://doi.org/10.1016/j.technovation.2024.103017
Doumpos, M., Zopounidis, C., Gounopoulos, D., Platanakis, E., & Zhang, W. (2023). Operational
research and artificial intelligence methods in banking. European Journal of Operational
Research, 306(1), 1-16. https://doi.org/10.1016/j.ejor.2022.04.027
Faheem, M. A. (2021). AI-Driven Risk Assessment Models: Revolutionizing Credit Scoring and
Default Prediction. Unpublished. https://doi.org/10.13140/RG.2.2.21281.01128
Fathy, T. (2024). Artificial Intelligence and Predictive Data Analytics to Enhance Risk Assessment
and Credit Scoring Mechanisms in Retail Banking.
Fatima, S., & Chakraborty, M. (2024). Adoption of artificial intelligence in financial services: The
case of robo-advisors in India. IIMB Management Review, 36(2), 113-125.
https://doi.org/10.1016/j.iimb.2024.04.002
model.
Gasmi, I., Neji, S., Mansouri, N., & Soui, M. (2025). Bank credit risk prediction using machine
learning
Neural
Computing
and
Applications,
(16),
-10350.
https://doi.org/10.1007/s00521-025-11044-5
Hajipour, V., Hekmat, S., & Amini, M. (2023). A value-oriented Artificial Intelligence-as-a-Service
business plan using integrated tools and services. Decision Analytics Journal, 8, 100302.
https://doi.org/10.1016/j.dajour.2023.100302
Hussain, S., Bharathy, G., & Aziz, S. (2024). Explainable Artificial Intelligence in Financial
Services: A Case Study on Credit Card Delinquency. SSRN. https://doi.org/10.2139/ssrn.4930148
Kiran, A., Gongada, T. N., Arangi, V., Ahmad, A. Y. A. B., Dhabliya, D., & Gupta, A. (2023).
Assessing the Performance of Machine Learning Algorithms for Credit Risk Assessment. 2023
rd International Conference on Advancement in Electronics & Communication Engineering
(AECE), 881-886. https://doi.org/10.1109/AECE59614.2023.10428359
Kowsar, M. (2022). A SYSTEMATIC REVIEW OF CREDIT RISK ASSESSMENT MODELS IN
EMERGING ECONOMIES: A FOCUS ON BANGLADESH’S COMMERCIAL BANKING
SECTOR. American Journal of Advanced Technology and Engineering Solutions.
Lappas, P. Z., & Yannacopoulos, A. N. (2021). A machine learning approach combining expert
knowledge with genetic algorithms in feature selection for credit risk assessment. Applied Soft
Computing, 107, 107391. https://doi.org/10.1016/j.asoc.2021.107391
Liu, J., Zhang, S., & Fan, H. (2022). A two-stage hybrid credit risk prediction model based on
XGBoost and graph-based deep neural network. Expert Systems with Applications, 195, 116624.
https://doi.org/10.1016/j.eswa.2022.116624
Machado, M. R., & Karray, S. (2022). Assessing credit risk of commercial customers using hybrid
machine learning algorithms. Expert Systems with Applications, 200, 116889.
https://doi.org/10.1016/j.eswa.2022.116889
Artículo de investigación
Malik, S., Muhammad, K., & Waheed, Y. (2024). Artificial intelligence and industrial applications
A revolution in modern industries. Ain Shams Engineering Journal, 15(9), 102886.
https://doi.org/10.1016/j.asej.2024.102886
Mi Alnaser, F., Rahi, S., Alghizzawi, M., & Ngah, A. H. (2023). Does artificial intelligence (AI)
boost digital banking user satisfaction? Integration of expectation confirmation model and
antecedents of artificial intelligence enabled digital banking. Heliyon, 9(8), e18930.
https://doi.org/10.1016/j.heliyon.2023.e18930
Milojević, N., & Redzepagic, S. (2021). Prospects of Artificial Intelligence and Machine Learning
Application in Banking Risk Management. Journal of Central Banking Theory and Practice,
(3), 41-57. https://doi.org/10.2478/jcbtp-2021-0023
Noriega, J. P., Rivera, L. A., & Herrera, J. A. (2023). Machine Learning for Credit Risk Prediction:
A Systematic Literature Review. Data, 8(11), Article 11. https://doi.org/10.3390/data8110169
Navarro Pino, D., Badillo Rincón, J. S., Portillo Padilla, M. D., & Pineda Aguilera, S. E. (2024).
Tecnologías y herramientas del internet de las cosas (IoT) para el desarrollo de prototipos de
entornos cotidianos. Revista Colombiana de Tecnologías de Avanzada (RCTA), 2(44), 97–103.
https://doi.org/10.24054/rcta.v2i44.3020
Pattnaik, D., Ray, S., & Raman, R. (2024). Applications of artificial intelligence and machine learning
in
the financial services industry: A bibliometric review. Heliyon, 10(1), e23492.
https://doi.org/10.1016/j.heliyon.2023.e23492
Paz, Á., Crawford, B., Monfroy, E., Barrera-García, J., Peña Fritz, Á., Soto, R., Cisternas-Caneo, F.,
& Yáñez, A. (2025). Machine Learning and Metaheuristics Approach for Individual Credit Risk
Assessment:
A
Systematic
Literature
Review.
Biomimetics,
(5),
https://doi.org/10.3390/biomimetics10050326
Polireddi, N. S. A. (2024). An effective role of artificial intelligence and machine learning in banking
sector. Measurement: Sensors, 33, 101135. https://doi.org/10.1016/j.measen.2024.101135
Pozzo, D. N., Gonzalez Beleño, C. A., Correa, K. R., Donado, M. G., Gomez Pedroza, F. J., &
Moncada Diaz, J. E. (2024). Managers’ attitudes and behavioral intentions towards using artificial
intelligence for organizational decision-making: A study with Colombian SMEs. Procedia
Computer Science, 238, 956-961. https://doi.org/10.1016/j.procs.2024.06.119
Proyag Pal, Zhiyuan Wang, Xu Zhu, Jiajia Chew, Katarzyna Pruś, & Xiangang Wei. (2025). AI-Based
Credit Risk Assessment and Intelligent Matching Mechanism in Supply Chain Finance.
https://doi.org/10.5281/ZENODO.15368771
P.s., Dr. V. (2023). How can we manage biases in artificial intelligence systems – A systematic
literature review. International Journal of Information Management Data Insights, 3(1), 100165.
https://doi.org/10.1016/j.jjimei.2023.100165
Rizal, N. A. (2024). Artificial Intelligence in Finance. En Reference Module in Social Sciences.
Elsevier. https://doi.org/10.1016/B978-0-443-13701-3.00030-X
Rodrigues, A. R. D., Ferreira, F. A. F., Teixeira, F. J. C. S. N., & Zopounidis, C. (2022). Artificial
intelligence, digital transformation and cybersecurity in the banking sector: A multi-stakeholder
cognition-driven framework. Research in International Business and Finance, 60, 101616.
https://doi.org/10.1016/j.ribaf.2022.101616
review.
Sadok, H., Sakka, F., & El Maknouzi, M. E. H. (2022). Artificial intelligence and bank credit analysis:
A
Cogent
Economics
https://doi.org/10.1080/23322039.2021.2023262
&
Finance,
(1),
Artículo de investigación
review.
Shi, S., Tse, R., Luo, W., D’Addona, S., & Pau, G. (2022). Machine learning-driven credit risk: A
systemic
Neural
Computing
and
Applications,
(17),
-14339.
https://doi.org/10.1007/s00521-022-07472-2
Singh, J., Singh, G., Gahlawat, M., & Prabha, C. (2022). Big Data as a Service and Application for
Indian
Banking
Sector.
Procedia
Computer
Science,
,
-887.
https://doi.org/10.1016/j.procs.2022.12.090
Stanley Chidozie Umeorah, Adesola Oluwatosin Adelaja, Bibitayo Ebunlomo Abikoye, Oluwatoyin
Funmilayo Ayodele, & Yewande Mariam Ogunsuji. (2024). Data-driven credit risk monitoring:
Leveraging machine learning in risk management. Finance & Accounting Research Journal, 6(8),
-1435. https://doi.org/10.51594/farj.v6i8.1399
Tao, M. (2024). Digital brains, green gains: Artificial intelligence’s path to sustainable
transformation.
Journal
of
Environmental
Management,
,
https://doi.org/10.1016/j.jenvman.2024.122679
Tewari, I., Bisht, S., Tiwari, A., Joshi, B., Arora, S., & Tewari, G. (2023). The Revolutionary
Transformation of India’s Banking Industry through Artificial Intelligence. 2023 14th
International Conference on Computing Communication and Networking Technologies
(ICCCNT), 1-5. https://doi.org/10.1109/ICCCNT56998.2023.10307322
Tóth, Z., & Blut, M. (2024). Ethical compass: The need for Corporate Digital Responsibility in the
use of Artificial Intelligence in financial services. Organizational Dynamics, 53(2), 101041.
https://doi.org/10.1016/j.orgdyn.2024.101041
Trzaska, R., & Sus, A. (2023). Industry 4.0 business strategic risks based on the scalability 4.0
concept. Artificial Intelligence area. Procedia Computer Science, 225, 3255-3264.
https://doi.org/10.1016/j.procs.2023.10.319
Wei, Y. (2023). Application of Machine Learning and Artificial Intelligence in Credit Risk
Assessment. 2023 2nd International Conference on Artificial Intelligence and Autonomous Robot
Systems (AIARS), 150-156. https://doi.org/10.1109/AIARS59518.2023.00037
Wilhelmina Afua Addy, Chinonye Esther Ugochukwu, Adedoyin Tolulope Oyewole, Onyeka
Chrisanctus Ofodile, Omotayo Bukola Adeoye, & Chinwe Chinazo Okoye. (2024). Predictive
analytics in credit risk management for banks: A comprehensive review. GSC Advanced Research
and Reviews, 18(2), 434-449. https://doi.org/10.30574/gscarr.2024.18.2.0077
Zhang, X., Xu, L., Li, N., & Zou, J. (2024). Research on Credit Risk Assessment Optimization Based
on
Machine
Learning.
Computer
Science
and
Mathematics.
https://doi.org/10.20944/preprints202407.1349.v1
Zhu, H., Vigren, O., & Söderberg, I.-L. (2024). Implementing artificial intelligence empowered
financial advisory services: A literature review and critical research agenda. Journal of Business
Research, 174, 114494. https://doi.org/10.1016/j.jbusres.2023.114494

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

